SSVM: A Smooth Support Vector Machine for Classification

نویسندگان

  • Yuh-Jye Lee
  • Olvi L. Mangasarian
چکیده

Smoothing methods, extensively used for solving important mathematical programming problems and applications, are applied here to generate and solve an unconstrained smooth reformulation of the support vector machine for pattern classification using a completely arbitrary kernel. We term such reformulation a smooth support vector machine (SSVM). A fast Newton-Armijo algorithm for solving the SSVM converges globally and quadratically. Numerical results and comparisons are given to demonstrate the effectiveness and speed of the algorithm. On six publicly available datasets, tenfold cross validation correctness of SSVM was the highest compared with four other methods as well as the fastest. On larger problems, SSVM was comparable or faster than SVM [17], SOR [23] and SMO [27]. SSVM can also generate a highly nonlinear separating surface such as a checkerboard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM

The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...

متن کامل

Spline Function Smooth Support Vector Machine for Classification

Support vector machine (SVM) is a very popular method for binary data classification in data mining (machine learning). Since the objective function of the unconstrained SVM model is a non-smooth function, a lot of good optimal algorithms can’t be used to find the solution. In order to overcome this model’s non-smooth property, Lee and Mangasarian proposed smooth support vector machine (SSVM) i...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

The Default Risk of Firms Examined with Smooth Support Vector Machines

In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank’s objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate ...

متن کامل

The Default Risk of Firms Examined with Smooth Support Vector

In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank’s objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2001